Tag Archives: Hyperspectral data analysis

Pixel-wise linear/nonlinear nonnegative matrix factorization for unmixing of hyperspectral data (in ICASSP’20)

By Fei Zhu, Paul Honeine, Jie Chen.

In Proc. 45th IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 4 – 8 May 2020.

 link   Pixel-wise linear/nonlinear nonnegative matrix factorization for unmixing of hyperspectral data [pdf] paper   doi:10.1109/ICASSP40776.2020.9053239

Abstract. Nonlinear spectral unmixing is a challenging and important task in hyperspectral image analysis. The kernel-based bi-objective non-negative matrix factorization (Bi-NMF) has shown its usefulness in nonlinear unmixing; However, it suffers several issues that prohibit its practical application. In this work, we propose an unsupervised nonlinear unmixing method that overcomes these weaknesses. Specifically, the new method introduces into each pixel a parameter that adjusts the nonlinearity therein. These parameters are jointly optimized with endmembers and abundances, using a carefully designed objective function by multiplicative update rules. Experiments on synthetic and real datasets confirm the effectiveness of the proposed method.